YAPI İŞLERİNDE YÜKSEKTE ÇALIŞMALARDA
İŞ SAĞLIĞI VE GÜVENLİĞİ UYGULAMA REHBERİ

2018
YAPI İŞLERİNDE
YÜKSEKTE ÇALIŞMALARDA
İŞ SAĞLIĞI VE GÜVENLİĞİ UYGULAMA
REHBERİ

Yayına Hazırlayan
T.C. Aile, Çalışma ve Sosyal Hizmetler Bakanlığı
İş Sağlığı ve Güvenliği Genel Müdürlüğü
Emek Mahallesi, 17. Cadde No:13
06520 Çankaya / ANKARA
Telefon: 0 312 296 60 00
Faks: 0 312 215 50 28
T.C. Aile, Çalışma ve Sosyal Hizmetler Bakanlığı
Mart 2018
İÇİNDEKİLER

ŞEKİLLER .. v
TABLOLAR ... vii
1. GİRİŞ .. 1
 1.1. AMAÇ VE KAPSAM ... 2
 1.2. İLGİLİ MEVZUAT ... 2
 1.3. SORUMLULUKLAR ... 3
 1.4. EĞİTİM VE BİLGİLENDİRME .. 4
2. YÜKSEKTEN DÜŞME ... 6
 2.1. YÜKSEKTE ÇALIŞMA PLANI .. 9
 2.2. KONTROL HIYERARŞİSİ .. 10
3. DÜŞMEYE KARŞI KORUYUCU SİSTEMLER .. 14
 3.1. DÜŞMEYİ ÖNLEYİCİ SİSTEMLER .. 14
 3.1.1. Geçici Kenar Koruma Sistemleri .. 14
 3.1.2. Kapak Sistemleri .. 20
 3.1.3. Hareketi Kısıtlayıcı Sistemler (HKS) ... 20
 3.2. ÇALIŞMA KONUMLAMA SİSTEMLERİ .. 21
 3.3. DÜŞMEYİ DURDURUCU SİSTEMLER .. 21
 3.3.1. Güvenlik Ağları .. 21
 3.3.2. Hava Yastıkları ... 23
 3.3.3. Yakalama Platformları .. 25
 3.3.4. Kişisel Düşmeyi Durdurucu Sistemler ... 25
4. YÜKSEKTE ÇALIŞMA EKİPMANLARI ... 30
 4.1. ISKELELER .. 30
 4.2. MERDİVENLER ... 32
 4.3. YÜKSELTİLEBİLEN SEYYAR İŞ PLATFORMLARI .. 34
 4.4. SÜTUNLU ÇALIŞMA PLATFORMLARI ... 36
 4.5. ERIŞİM KULELERİ .. 37
5. İYİ UYGULAMA ÖRNEKLERİ ... 38
6. EKLER ... 42
 EK-1: Kişisel Koruyucu Donanımlar .. 43
 EK-2: Tehlike Kaynakları - Önemli Hususlar ... 48
 KAYNAKLAR ... 49
ŞEKİLLER

Şekil 1.1. Yüksekte çalışma .. 1
Şekil 2.1. Düşme riski .. 8
Şekil 2.2. Kontrol önlemleri hiyerarşisi .. 10
Şekil 2.3. Tehlikeyi kaynağında yok etme ... 11
Şekil 2.4. Güvenli erişim ... 12
Şekil 2.5. Kişisel koruyucu tedbirler .. 12
Şekil 3.1. Kenar koruma tipleri .. 15
Şekil 3.2. Kenar koruma sistemi ... 17
Şekil 3.3. Kenar koruma uygulamaları .. 18
Şekil 3.4. Kenar koruma eğimi ... 19
Şekil 3.5. Kenar koruma sistemi örnekleri .. 19
Şekil 3.6. Kapak sistemi ... 20
Şekil 3.7. Hareketi kısıtlayıcı sistem ... 20
Şekil 3.8. Korkuluk ve HKS ile düşmeye karşı koruma ... 20
Şekil 3.9. Çalışma konumlama sistemi ... 21
Şekil 3.10. Güvenlik ağı .. 21
Şekil 3.11. Güvenlik ağı sistem tipleri ... 22
Şekil 3.12. İzin verilen düşme yükseklikleri (Eğim ≤ 20°) ... 22
Şekil 3.13. Yakalama genişliği ... 23
Şekil 3.14. Hava yastığı sisteminin bir inşaatta kullanımı .. 23
Şekil 3.15. Hava yastığı sistemi ... 24
Şekil 3.16. Yakalama platformu ... 25
Şekil 3.17. Kişisel düşmeye durdurucu sistemin temel bileşenleri .. 26
Şekil 3.18. Tam vücut tipi emniyet kemerı, bağlama tertibatı ve enerji emici 28
Şekil 3.19. Geri sarmalı tipte düşme önleme tertibatı ... 28
Şekil 3.20. Salınım tehlikesi .. 29
Şekil 4.1. Cephe iskelesi .. 30
Şekil 4.2. Merdivenle erişim .. 32
Şekil 4.3. Merdivende 3 nokta kuralı ... 33
Şekil 4.4. Merdivende 4'e 1 oranı ... 33
Şekil 4.5. Yükseltilebilen seyyar iş platformları ... 34
Şekil 4.6. Platformda doğru çalışma ... 35
Şekil 4.7. Sütunlu çalışma platformunun bileşenleri.. 36
Şekil 4.8. Erişim kulesi bileşenleri... 37
Şekil 4.9. Erişim kulesi ile çalışma .. 37
Şekil 5.1. Hareketi kısıtlayıcı sistem ile düşmeye karşı koruma 37
Şekil 5.2. Platformlu merdivende çalışma ... 37
Şekil 5.3. Merdivenin yerleştirilmesi ... 37
Şekil 5.4. İnşaat kalıp çalışmasında düşmeye karşı koruma 40
Şekil 5.5. Araç üzerinde düşmeye karşı koruma ... 40
Şekil 5.6. Kazı kenarında düşmeye karşı koruma .. 40
Şekil 5.7. Çatı çalışmasında düşmeye karşı koruma 41
Şekil 5.8. Yaşam hattı ile düşmeye karşı koruma ... 41
Şekil 5.9. İskele kurulumunda düşmeye karşı koruma 42
Şekil 5.10. Güvenlik ağı ile düşmeye karşı koruma ... 42
Şekil 5.11. Kat merdivenlerinde düşmeye karşı koruma 42
Şekil 6.1. Tam vücut kemer sistem örneği .. 44
Şekil 6.2. Görsel inceleme .. 45
Şekil 6.3. Şerit inceleme ... 45
Şekil 6.4. Tam vücut kemenin giyilmesi ... 46
Şekil 6.5. Çeşitli lanyard tipleri .. 47
Şekil 6.6. Enerji emici aparat ... 47
TABLOLAR

Tablo 2.1 Düşme ile oluşan hız ve mesafeler... 6
Tablo 3.1. Asgari yakalama genişlikleri... 23
1. GİRİŞ

Çalışma hayatında çalışanlar tarafından yürütülmekte olan çeşitli iş ve faaliyetler, çalışanların genel olarak açık ve kapalı ortamlarda özel olarak ise ofis ortamında, yerin altında, yüksek yerlerde, su üstünde veya altında vb. farklı şart ve koşullarda çalışmasını gerektirebilmektedir.

Birçok sektörde yürütülmekte olan işlerin doğası gereği ortaya çıkardığı olumsuz çalışma koşullarının en yaygın olanlarından birisi de şüphesiz ki çalışanların düşme riskine maruz kaldıkları yüksekte çalışmalardır. Ülkemiz mevzuatında yüksekte çalışma “seviye farkı bulunan ve düşme sonucu yaralanma ihtimalinin oluşabileceği her türlü alanda yapılan çalışma” şeklinde tanımlanmaktadır [1].

Mevzuatımızda belirtilen tanımın konuyu geniş yelpazede değerlendirildiği ve bir faaliyetin yüksekte çalışma olarak dikkate alınabilmesi için iki hususun aynı anda bir araya gelmesi gerektiğini görülmektedir. Bu hususlar seviye farkı ve yaralanma ihtimalidir.

Seviye farkı yani yükseklik ile ilgili olarak bazı Avrupa Birliği ülkeleri, Amerika Birleşik Devletleri, Avustralya gibi ülkelerde farklı sınır değerleri yer almaktadır. Mevzuatımızda ise bir rakamsal sınırlamaya gidilmemiş ve kapsam daha geniş tutulmuştur.

Örneğin, mevzuatımız 50 cm yükseklikte bir platform ya da basamak üzerine çıkılarak yapılan kısa süreli bir tadilat işini de; yerden 3 metre yükseklikte bir iskele üzerinde yapılan bakım, onarım işini de yüksekte çalışma olarak kabul etmektedir.

Özellikle inşaat sektöründe yürütülen kalıp, demir ve beton döküm işleri ile siva, boya, izolasyon gibi işler, çatı imalatı, köprü, çelik konstrüksiyon vb. birçok faaliyet ile çeşitli

Şekil 1.1. Yüksekte çalışma [2]

Örneğin, mevzuatımız 50 cm yükseklikte bir platform ya da basamak üzerine çıkılarak yapılan kısa süreli bir tadilat işini de; yerden 3 metre yükseklikte bir iskele üzerinde yapılan bakım, onarım işini de yüksekte çalışma olarak kabul etmektedir.

Özellikle inşaat sektöründe yürütülen kalıp, demir ve beton döküm işleri ile siva, boya, izolasyon gibi işler, çatı imalatı, köprü, çelik konstrüksiyon vb. birçok faaliyet ile çeşitli
işyerlerinde platformlar, iskeleler, merdivenler vb. geçici iş ekipmanları üzerinde yapılan faaliyetler ya da sabit makine, tezgah gibi iş ekipmanları veya yapılar üzerinde yapılan temizlik, bakım ve kontroller gibi daha birçok faaliyet, bünyesinde yüksekte çalışma bariındırılmaktadır. Bu ve bunun gibi riskli sektörlerde düşme tipi iş kazalarında ciddi yaralanmaların ihtimal dâhilinde olduğu dikkate alınrsa, yüksekte çalışma hususunun ne kadar önemli olduğunu daha iyi anlaşılacaktır.

1.1. AMAÇ VE KAPSAM

Çalışma hayatı ile iç içe olan yüksekte çalışmaya gerekli önem verilmediğinde, özellikle düşme şeklinde birçok iş kazasının yaşandığı ve bu sebeple birçok çalışanın düşmenin ağır etkileri de dikkate alındığında hayatını kaybettiği görülmektedir.

Hazırlanan bu rehberin ana amacı; düşme başta olmak üzere yüksekte çalışmadan kaynaklanan iş kazalarının önlenebilmesini ve tüm çalışanların işlerini sağlıklı ve güvenli şekilde yürütebilmelerini sağlamak amacıyla genel hatlarıyla bilgi vermektedir.

Rehber, yüksekte çalışma yapılan bütün işyerlerindeki işverenler, çalışanlar ve teknik personel ile yüksekte çalışma içeren işlerin planlanması ve hazırlık aşamalarında bulunan herkesin faydalanması için hazırlanmıştır.

Rehber içeriğinde, yüksekte çalışma ile ilgili risklerin nasıl değerlendirilip kontrol altına alınacağına ve yüksekte güvenli çalışmının sağlanması için alınacak toplu ve kişisel koruyucu tedbirler ile çalışma yöntemleri ve kullanılabilecek iş ekipmanlarına dair genel seviyede bilgiler verilmiştir.

1.2. İLGİLİ MEVZUAT

İş sağlığı ve güvenliği (İSG) ile ilgili hususlar, 20/6/2012 tarihli İş Sağlığı ve Güvenliği Kanunu ile Kanunun 30 uncu maddesine dayanılarak yayımlanan ilgili yönetmeliklerde belirtilen hükümler ile düzenlenmiştir.

İSG mevzuatında yüksekte çalışma ile ilgili hükümler genel olarak aşağıda belirtilen iki yönetmelik çerçevesinde toplanmıştır:

- Yapı İşlerinde İş Sağlığı ve Güvenliği Yönetmeliği,
- İş Ekipmanlarının Kullanımında Sağlık ve Güvenlik Şartları Yönetmeliği.
05/10/2013 tarihli ve 28786 sayılı Resmi Gazete’de yayımlanan Yapı İşlerinde İş Sağlığı ve Güvenliği Yönetmeliği yüksekte çalışma ile ilgili hükümlerinin en kapsamlı olduğu düzenlemesi. Bu Yönetmelik içerisinde:

- Yüksekte çalışmanın tanımı,
- Yüksekte yapılan çalışmalarında uyulacak hususlar,
- İlgili standartlara atıflar ile alınacak teknik önlemlerin detayları,
- İskele sistemleri ile ilgili hükümler yer almaktadır.

25/4/2013 tarihli ve 28628 sayılı Resmi Gazete’de yayımlanan İş Ekipmanlarının Kullanımında Sağlık ve Güvenli Şartları Yönetmeliği’nde ise aşağıdaki hususlara dair hükümler düzenlenmiştir:

- Yüksekte yapılan geçici işlerde, iş ekipmanının kullanımı ile ilgili genel hususlar,
- El merdivenlerinin kullanımı ile ilgili özel hükümler,
- İskellelerin kullanımı ile ilgili özel hükümler,
- Halat kullanarak yapılan çalışmalarla ilgili özel hükümler.

1.3. SORUMLULUKLAR

İşverenler, çalışanlar ve diğer yetkili kişilerin görev, yetki ve sorumlulukları; İş Sağlığı ve Güvenliği Kanunu ve bu Kanunun kapsamında yayımlanan ilgili yönetmeliklerde belirtilmektedir.

Yüksekte güvenli çalışma, işverenler başta olmak üzere tüm çalışanların ve ilgili teknik personelin sorumluluklarını yerine getirmesi ve birlikte hareket etmesi ile sağlanmaktadır. İlgili tarafların sorumlulukları, yüksekte çalışma gerektiren işlerin sağlıklı ve güvenli şekilde sürdürülmesi açısından incelediğinde ise temel olarak aşağıdaki hususların sağlanması gerektiğini görülmektedir:

- İşverenler; işyerlerine ve çalışma alanlarına güvenli erişim ile güvenli giriş-çıkış yerleri sağlanmasından, toplu koruyucu önlemler ile kişisel koruyucu donanımların ve sistemlerin temin edilmesinden ve uygulamaların kontrolünden sorumludurlar.

Çalışanlar; kendilerinin ve diğer çalışanların iş sağlığı ve güvenliği şartlarını tehlikeye atamamaya azami derecede dikkat etmekle, işyeri genel prosedürlerine, güvenli çalışma
yöntemlerine ve iş sağlığı ve güvenliğinin sağlanması amacıyla kendilerine verilen diğer bütün talimatlara uymakla ve kişisel koruyucu donanımlarını kullanmak, temizliğini ve korumasını sağlamakla yükümlüldüler.

1.4. EĞİTİM VE BİLGİLENDİRME

İş kazalarının önlenmesinde en önemli hususlardan birisi de yapılacak işin ehil ve yeterli eğitim almış kişiler tarafından yapılmasıdır. İşlerini doğru şekilde, usul ve yöntemlerine uygun olarak yapan çalışanlar, iş kazalarının büyük oranda düşmesini sağlayacaktır. Bu sebeple çalışanların gerek işe girişlerinde gerekse çalışma hayatları boyunca yaptığı işlerle ilgili mesleki eğitim almaları, işlerini sağlıklı ve güvenli şekilde yürütübilmeleri için iş sağlığı ve güvenliği (İSG) eğitimleri ve özel çalışma ortamlarında ilgili eğitim almaları büyük önem arz etmektedir.

Yüksekte çalışma gerektiren işlerde de yapılan işe dair mesleki eğitimin ve ilgili Yönetmelikler ile belirlenen İSG eğitimlerinin yanı sıra çalışma ortamının yapısı gereği çalışanlara özel eğitim verilmelidir. Nitekim “Yapı işlerinde İş Sağlığı ve Güvenliği Yönetmeliği” nde aşağıdaki hüküm yer almaktadır:

“Bu alanlarda çalışanlara yüksekte çalışmaya ilgili tehlike ve riskler konusunda bilgilendirme yapılarak gerekli eğitimi verilir.”

Yüksekte çalışma sırasında karşılaşılabilecek tehlike ve riskler büyük oranda belli olmakla birlikte çalışma esnasında kullanılan iş ekipmanının özellikleri, kurulum ile ilgili hususlar ve kişisel koruyucu donanımlar vb. unsurlar bazı tehlike ve risklerin gözden kaçırılamasına sebep olabilir. Bu sebeple çalışanlara verilecek eğitimin ekipmanın kurulumu ve çalışma alanna
erişimden işin tamamlanmasına kadar bütün süreçleri kapsayacak şekilde olmasına dikkat edilmelidir.

Yönetmelikte yüksekte çalışma eğitiminin içeriği ile ilgili hükümler yer almamaktadır. Ancak eğitim konularının belirlenmesinde genel olarak aşağıdaki hususlara önem verilmelidir:

- Yapılarak işin mahiyeti ve işin gerçekleştirileceği ortam ve yapının fiziki durumu,
- Aynı anda çevrede yürütülmekte olan faaliyetler,
- Yüksekte çalışma için kullanılması planlanan iş ekipmanı,
- Çalışanların durumu, bilgi ve tecrübe seviyeleri,
- Muhtemel acil durumlar.

İş, çalışan ve işyeri ortamının nitelikleri değerlendirildikten sonra aşağıda belirtilen konularda mevzunun önemine yeterince dikkat çeken bir eğitim düzenlenenebilir:

- Basmakalıp davranışların düzeltilmesi ve güvenlik kültürü,
- Yüksekte çalışma ve düşme kavramları,
- Yüksekte çalışma gerçekleştiriren çalışanların görev ve sorumlulukları,
- Yüksekte çalışma sırasında karşılaşılabilecek tehlike ve riskler,
- Tehlike ve risklere karşı uygulanacak toplu ya da kişisel tüm koruyucu tedbirlerin hıyerarşisi, özellikleri, çalışma alanına uygulanması,
- Kişisel koruyucu donanımların özellikleri ve doğru kullanımı,
- Uyarı işaretlerinin özellikleri ve seçimi,
- Yüksekte çalışma sırasında kullanılan ekipman ve malzemelerin bakımı ve incelenmesi,
- Acil durum prosedürleri, Kurtarma planı,
- Çalışanlar arası işbirliği, Koordinasyon ve etkin iletişim,
- Ramak kala olayların bildirilmesi.
2. YÜKSEKTE DEN DÜŞME

Düşmeler, temel olarak hemzemin yanı aynı seviyede oluşan düşmeler ve seviye farklı sebebiyle gerçekleşen yüksekten düşmeler şeklinde iki sınıfa ayrılabilir. Yüksekten düşmeler seviye farklı sebebiyle oluşan çarpma etkisi de göz önüne alındığında daha ciddi sonuçlar doğurmakta ve yüksekte çalışmanın yapıldığı iş ve işyerlerinde sıkça yaşanmaktadır. Tablo 2.1 de düşme esnasında alınan yol ve oluşan hızlar gösterilmektedir.

Tablo 2.1 Düşme ile oluşan hız ve mesafeler [3]

<table>
<thead>
<tr>
<th>Zaman (s)</th>
<th>Hız (km/s)</th>
<th>Mesafe (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1</td>
<td>3,52</td>
<td>0,05</td>
</tr>
<tr>
<td>0,2</td>
<td>7,06</td>
<td>0,20</td>
</tr>
<tr>
<td>0,5</td>
<td>17,68</td>
<td>1,23</td>
</tr>
<tr>
<td>1</td>
<td>35,32</td>
<td>4,91</td>
</tr>
<tr>
<td>1,5</td>
<td>52,98</td>
<td>11,05</td>
</tr>
<tr>
<td>2</td>
<td>70,63</td>
<td>19,62</td>
</tr>
<tr>
<td>2,5</td>
<td>88,31</td>
<td>30,66</td>
</tr>
<tr>
<td>3</td>
<td>105,95</td>
<td>44,15</td>
</tr>
</tbody>
</table>

Tablo incelendiğinde, düşen kişinin yaklaşık 0,2 saniye sonra reaksiyon gösterdiği varsayılrsa, bu süre içerisinde 20 cm mesafeli bir düşüş gerçekleşmiştir olduğu görülmektedir. Yaş, sağlık vb. faktörlere bağlı olarak bu reaksiyonun süresinin artması çok daha büyük bir düşüş gerçekleştiğinden sonra tepki verilmesine neden olmaktadır. Dolayısıyla bu durum düşme hareketi başladığında düşmenin önlenmesini çok daha zor kılmaktadır.

Düşen kişinin bir saniye sonra yaklaşık 5 m ve iki saniye sonra yaklaşık 20 m düşmüş olması hızdaki artış ve dolayısıyla çarpma sırasında olacak yüksek etkisi de gözler önüne sermektedir. Bu sebeple özellikle yüksekten düşme tipi iş kazaları, ağır sonuçlu ya da ölümlü olma ihtimali yüksek olan kazalardır.

Çalışanların sık sık düşmesinin önlenmesinde gerekli güvenlik tedbirlerinin alınması çok önemli bir faktördür. Ayrıca dikkate alınması gereken ve bir kısmı düzeltilebilen sağlıkla ilgili faktörler de söz konusudur. Bir çalıșında bu faktörler ne kadar ise o kişinin düşme ihtimali de o derece artmaktadır.
Bu faktörler şu şekilde sıralanabilir:

- Alt vücudun güçsüz olması,
- Yürüyüş şekli ve denge ile alakalı problemler,
- Psiko-aktif ilaçların kullanımı,
- Postural baş dönümleri,
- Zayıf görme,
- Ayak ve/veya ayakkabılardan ilgili sorunlar,
- İlerlemiş yaş,
- Yorgunluk,
- Kasların zayıf olması,
- Önceki düşmeler,
- Şeker hastalığı, artrit vb. kronik durumlar,
- Düşme/yükseklik korkusu.

Kişinin kendisi ile ilgili bu iç faktörlerin yanı sıra düşme olayını tetikleyen bazı dış faktörlerin de dikkat alınması önemlidir. Bu faktörler şu şekildedir:

- İşyeri faktörleri,
- İş organizasyonu ile ilgili faktörler.

İşyeri ve iş organizasyonu ile ilgili faktörler ise aşağıda belirtilen hususları içermektedir [4]:

- İşyeri zeminindeki döküntüler,
- Çalışma yüzeyindeki buzlanma, kar ve yağmur,
- Gevşek zemin malzemeleri,
- Zayıf / yetersiz aydınlatma,
- Düz olmayan / aşırı pürüzlü çalışma zeminleri,
- Hızlı çalışma temposu,
- Sıvı ve/veya yağ kullanımını içeren işler,
- Planlama yapılmadan çalışılması,
- Yetersiz kontrol ve gözetim,
- İlgili görevle alakalı bilgi ve eğitimin yetersiz verilmiş olması,
- Düşmeye karşı uygun olmayan koruyucu yöntemin seçilmesi,
- Seçilen ekipmanın uygun olmayacak şekilde kurulması ve / veya kullanılması,
Görev için gerekli ekipman ve/veya kişisel koruyucu donanımın tedarik edilmemiş olması,

Daha güvenli bir çalışma yöntemi varken uygun olmayan çalışmada ısrar edilmesi.

Bu faktörlerden birisi ya da birkaçının oluşmasıyla düşme olayı meydana gelmektedir.

Çalışanlar çalışma ortamları ve yaptıkları işin çeşidine bağlı olarak farklı ortam ve yapılarından düşebilmektedir.

Çalışanların düşmesi ile sonuçlanabilecek bu ortam ve yapılar şu şekilde sıralanabilir:

- Yapı kenar boşlukları,
- İskeler (Cephe, asma, mobil, kalıp altı vb.)
- Mobil yükseltilebilir iş platformları,
- Çatılar,
- Merdivenler (Kat merdivenler, el merdivenleri, dikey merdivenler vb.)
- Elektrik / telefon direkleri,
- Asansör, merdiven, baca, şafte ve aydınlatma vb. boşluklar,
- Silolar,
- Platform ve basamaklar,
- Kamyon, tanker vb. araçlar,
- Makine ve tezgâhlar,
- Çalışma sepetleri,
- Forklift ve vinçler,
- Kazı kenarları,
- Geçitler,
- Çelik yapılar,
- Halat ile yapılan çalışmalar,
- Diğer seviye farkı oluşturan yapı ve ekipmanlar.
2.1. YÜKSEKTE ÇALIŞMA PLANI

Yüksekte çalışmalarla ilgili olarak Yapı İşlerinde İş Sağlığı ve Güvenliği Yönetmeliğinde “yapılacak çalışmaların önceden planlanması ve organize edilmesi, bu planlama yapılırken yüksekten düşme ile ilgili hususlara acil durum planında yer verildiğinden emin olunması sağlanır” hüküm yer almaktadır.

Yüksekte çalışma planı [5];

- İşyerindeki bütün yüksekten düşme risklerini kapsamalı,
- Yüksekten düşmelerin önlenmesi için sorumlular ve sorumlulukları açıkça ortaya koymalı,
- Yüksekten düşme risklerinin ortadan kaldırılması için sistematik yaklaşımlar sunmalı,
- Yüksekte çalışma içeren işler başlamadan önce düşme önleyici ve koruyucu önlemler ile çalışma yöntemlerini sağlamak,
- Düse önleme ve yüksekte çalışma güvenliği için bütüncül bir yaklaşımın benimsenmesini sağlamak.

Yüksekte çalışma planı alana özel ve yüksekten düşme risklerinin ortadan kaldırılması ya da azaltılması amacıyla hazırlanmış dokümanı ifade etmektedir.

Yüksekte çalışma planı yetkin bir kişi tarafından hazırlanıp bir yönetici tarafından onaylanarak uygulamaya konulmalı ve planın sürekli olarak uygulamasının kontrolü ve denetiminin sağlanması için gerekli hükümler belirlenmelidir.

Yüksekte çalışma planı, uygulanışının ve etkinliğinin devamının sağlanması için periyodik olarak izlenmeli ve işyerinde sürekli kullanıma uygun biçimde saklanmalıdır.

Yüksekte Çalışma Planı Genel İçeriği;

- Düse Önleme Politikası
- Sorumluluklar
- Risk Yönetimi
- Kontrol Önlemleri
- Güvenli Çalışma Yöntemleri
- Talimatlar
- Kişisel Koruyucu Donanım Kullanımı
Denetim ve Bakım
- Eğitim
- Kaza Araştırmaları
- Acil Durum Müdahalesi

başlıkları içerebilir [5].

2.2. KONTROL HİYERARŞİSİ

Yürütilen çalışmalar sırasında oluşabilecek risklere karşı en uygun korunma yöntemlerinin seçilmesinde Şekil 2.2. de gösterilen kontrol önlemleri hıyerarşisi dikkate alınmalıdır [6].

Şekil 2.2. Kontrol önlemleri hıyerarşisi [6]

Yüksekte güvenli çalışmanın sürdürülmesi için aşağıdaki hususlar dikkate alınmalıdır:

- Öncelikli olarak yüksekte çalışma ve düşmeye karşıacak tedbirlerin uygulanması ile ilgili çalışma sahasında yer alan tüm taraf ve kişilerin sorumlulukları net bir şekilde belirtilmelidir.
Çalışma alanında, çevresinde ve geçiş güzergâhlarında düşmeye sebep olabilecek tüm iş faaliyetleri ve ekipmanlar belirlenmelidir.

Düşmeye sebep olabilecek hususların nasıl, ne sıklıkta ve hangi şartlarda yapıldığı göz öne alınmalıdır. (İşin kapsami, çalışma alanının düzeni, işin süresi, çalışma yüksekliği, çalışanların eğitim ve tecrübeleri, çalışma alanına erişim imkânları, alandaki çalışan sayısı, hava koşulları, eğimiş ya da kaygan zemin koşulları, yetersiz aydınlatma, yakındaki enerji hatları vb.)

Düşmenin önlenmesi ya da riskin minimize edilmesi için hangi önlemlerin alınması gerektiğini karar verilmeli ve bu aşamada kontrol önlemleri hiyerarşisi uygulanarak aşağıdaki hususlar öncelik sırasına göre değerlendirilmeye alınmalıdır:

Öncelikli olarak yüksekte çalışmaktan uygulanabilir olduğu süreceye kaçınılmalı ve yüksekte çalışmaya olan ihtiyaç ortadan kaldırılmalıdır. Şekil 2.3. de gösterildiği gibi tasarım ve planlama aşamalarında bu hususun dikkate alınmasına yetersiz iyileşmek, en baştan ortadan kaldırılabilir.

Prefabrik çatı elemanlarının yerde monte edilmesi, uzatılabilir kolu olan boyu ruloları vb. ekipmanların kullanılması, boyama vb. işlerin malzemeleri alanakta depolayarak yükseğe çıkılmaktan kurtulun.

Şekil 2.3. Tehlikeyi kaynağından yok etme [7]

Prefabrik çatı elemanlarının yerde monte edilmesi, uzatılabilir kolu olan boyu ruloları vb. ekipmanların kullanılması, boyama vb. işlerin malzemeleri alanakta depolayarak yükseğe çıkılmaktan kurtulun.
Tehlienin ortadan kaldırılması söz konusu değilse ve çalışmanın yüksekte yapılması zorunluysa, hâlihazırdaki güvenli çalışma yerlerinin seçimi, doğru iş ekipmanlarına başvurulması ve diğer tedbirlerin alınmasıyla güvenli erişim ve çalışma ortamı sağlanarak düşmenin önüne geçilmeli ve çalışanlar tehlikedenden izole edilmelidir. Güvenli çalışma platformları, bariyerler ve kenar koruma sistemleri, sabit ve hareketli iskeleler, yükseltilebilir iş platformları gibi ekipmanlar kullanılarak çalışanların düşmesini önleme ve çalışanlar tehlikeden izole edilmelidir (Şekil 2.4).

Tehlikenin ortadan kaldıramadığı ve çalışanların izole edilemediği durumlarda ise düşme mesafesi ve düşme neticesinde oluşabilecek sonuçların şiddetini uygun ekipmanların kullanımı ile minimize edilmelidir.

Şekil 2.5. de yer aldığı gibi hareketi kısıtlayıcı sistemler, düşmeyi durdurma sistemleri, pozisyon alma (konumlanma) sistemleri, iplik erişim sistemleri kullanılarak düşme riski, düşme mesafesi ve oluşacak muhtemel sonuçların şiddetini asgari düzeyeye indirilmelidir.

Düşmenin önlenmesi için yukarıda belirtilen kontrol tedbirlerinin birliktelikli kullanımı da söz konusudur. Tehlikenin en baştan bertaraf edilmesinin en etkin kontrol adımı olduğu dikkate alınmalı ve her bir adımda risk altındaki tüm çalışanları koruyan tedbirler (toplu korunma) bireyin sadece kendisini koruyan tedbirlerden (kişisel korunma) önce gelmelidir.

Yüksekte çalışma sırasında kullanılacak ekipmanın seçimi çalışmanın güvenli şekilde sürdürülübilemesi açısından son derece önemlidir. Dikkat edilecek bazı kriterler aşağıdaki belirtilmiştir [10].

Çalışma koşulları

Eğim, kötü zemin koşulları, engeller ve trafik, ekipman seçiminde rol oynamayan faktörlerdir. Örneğin yükseltilebilir iş platformu, stabilitesi ile ilgili bir tehlikinin söz konusu olmaması koşuluyla engellerin olduğu ve zemin koşullarının iyi olmadığı yerlerde istenen çalışma alanına erişmek için mobil iskele yerine tercih edilebilir.
► Giriş ve çıkış noktalarının mesafeleri

Yüksek mesafedeki girisler için merdiven kullanımının uygunluğu çok daha düşüktür.

► Düşmenin mesafesi ve sonuçları

Açılma (yerleştirme) mesafesi dikkate alınmadan düşmeyi durdurma sistemlerinin kullanılması neticesinde düşmeye karşı koruma etkisiz olacaktır. Çünkü düşme mesafesi gerekli olan açıklma mesafesinden daha az olduğundan durdurma sistemi tamamen çalışmadan çalışan zemine ya da bir alt seviyeye çarpacaktır.

► Yüksekte çalışma sırasında kullanılacak ekipmanın kullanım sıklığı ve süresi

Uzun süreli ve yüksek sıklıkta yapılan çalışmalar daha yüksek standartlarda düşmeye karşı koruma gerektirmektedir. Örneğin, merdiven kullanımından ziyade bir mobil iskele kullanımını tercih edilebilir. Merdiven ise kısa süreli ve düşük riskli tekrar eden işler için kullanılabilir.

► Kurtarma

Düşmeyi durdurma sistemi kullanan asılı halde kalmış bir çalışanın kurtarılmasının zor olduğu durumlarda yükseltilebilir iş platformu vb. diğer iş ekipmanlarının kullanımını tercih edilebilir.
3. DÜŞMEYE KARŞI KORUYUCU SİSTEMLER

Genel olarak düşmeye karşı koruma, çalışanın düşmesini önleyen ya da muhtemel bir düşmeyi durduran toplu ya da kişisel koruyucu sistemler ve yüksekte çalışmada kullanılabilecek iş ekipmanları kullanılarak sağlanmaktadır. Bu sistemler çalışanın serbest şekilde hareket etmesini sağlamakta ya da sabit veya hareketli ankraj noktalarına bağlanmasını gerekli kılmaktadır.

3.1. DÜŞMEYİ ÖNLEYİCİ SİSTEMLER

Alınacak toplu ya da kişisel koruyucu sistemler aracılığıyla çalışanın düşmesinin engellendiği sistemlerdir.

3.1.1. Geçici Kenar Koruma Sistemleri

Geçici kenar koruma sistemleri; inşaat sektörü başta olmak üzere birçok sektörde çalışanların ve malzemelerin çatı, kat kenarları, boşluklar, merdivenler, platformlar vb. seviye farkının oluşturduğu çalışma alanlarından alt seviyelere düşmesini önlemek için kullanılan düşmeyi önleyici ekipmanlardır. Şekil 3.1’de kenar korumunun çeşitli tipleri gösterilmektedir (Detaylı bilgi için TS EN 13374 standardına bakınız).
1. Döşeme kenari kelepçe sistemi
2. Zemine sabitlenen tip sistemi
3. Denge ağırlıklı sistem
4. Kiriş üst flanş kelepçe sistemi
5. Kolon kelepçe sistemi – Döşemeler ve düz/alçak eğimli çatılar
6. Kiriş alt flanş kelepçe sistemi
7. Kolon kelepçe sistemi - Eğimli çatılar
8. Çit (bariyer) sistemi *
9. Geçici yapılar üstünde kenar koruma
10. Geçici yapılar

* Güvenlik ağı ile ara korumayı sağladığı kenar koruma sistemleri de kullanılmaktadır. (Bknz. “Sistem U güvenlik ağıları”)
Kenar koruma sistemlerinin sınıflandırılması

Sınıf A:
- Koruma üzerine yaslanan kişiyi destekleme ya da yanında yürürken tutamaç görevi görme,
- Yürüyen ya da korumaya doğru düşen kişiyi toplu olarak durdurma,

Sınıf A, sadece statik yüklere direnç sağlayan korumadır.

Sınıf B:
- Koruma üzerine yaslanan kişiyi destekleme ya da yanında yürürken tutamaç görevi görme,
- Yürüyen ya da korumaya doğru düşen kişiyi toplu olarak durdurma,
- Eğimli bir yüzeyden kayan/aşağı doğru düşen kişiyi toplu olarak durdurma,

Sınıf B, statik yüklere ve sadece düşük dinamik eylemlere direnç sağlayan korumadır.

Sınıf C:

Dik eğimli zeminden aşağıya doğru kayan kişinin düşmesinin önlenmesi için gerekli güvenlik şartları dikkate alınarak yüksek dinamik kuvvetlere direnç sağlayan korumadır.

- Dik eğimli bir yüzeyden kayağın/aşağı doğru düşen kişiyi toplu olarak durdurma.

Kenar koruma sistemleri gereksinimleri

Kenar koruma sistemleri; ana korkuluk, ara korkuluk ya da ara koruma ve topluk levhasından oluşan sistemlerdir. Bütün bileşenler çalışma boyunca kazara çığma ya da yerinde hareket etmeye karşı güvenli olarak çekilde tasarlanmış olmalıdır.

Şekil 3.2.’de örnek bir kenar koruma sistemi gösterilmiştir.

Ana korkuluk üst yüzeyinin çalışma yüzeyinden en az 1 metre (çalışma yüzeyine dik olacak çekilde ölçülen mesafe) yukarıda olacak çekilde yerleştirilmesi sağlanmalıdır.
Ana korkuluklar sürekli olmalı ve oluşabilecek herhangi yatay bir boşluk 12 santimetreyi geçmemelidir (Bknz. Şekil 3.3).

Topuk levhası, çalışma yüzeyi ile kendisi arasında boşluk olmayacak şekilde yerleştirilmelidir.

Topuk levhası üst yüzeyi ile çalışma yüzeyi arasında ölçülen dikey mesafenin ise an az 15 santimetre olması sağlanmalıdır.

Kenar koruma sistemlerinde kullanılan güvenlik ağları ise TS EN 1263-1 Standardına uygun olmalıdır.

Sınıf A kenar koruma sistemi

Sınıf A kenar koruma sisteminin dik doğrultudan çalışma yüzeyine dişarıya ya da içeriye doğru eğimi 15° den fazla olmamalıdır.

Ara korkuluk kullanıldığında, korumada oluşacak boşlukların 47 cm çapında bir kürenin geçemeyeceği şekilde olması sağlanmalıdır (Bknz. Şekil 3.2).

Eğer ara korkuluk yoksa ya da sürekli değilse, kenar koruma sistemi boşluklarının 25 cm çapında bir kürenin geçemeyeceği şekilde olması sağlanmalıdır (Bknz. Şekil 3.3).

NOT: Sınıf A kenar koruma; çalışma yüzeyi açısı 10° den az ise tercih edilebilir.
Sınıf B kenar koruma sistemi

Sınıf B kenar koruma sisteminin dik doğrultudan çalışma yüzeyine dışarıya ya da içeriye doğru eğimi 15° den fazla olmamalıdır.

Sınıf B kenar korumadaki herhangi bir boşluğun 25 cm çapında bir kürenin geçemeyeceği şekilde olması sağlanmalıdır.

NOT: *Sınıf B kenar koruma;*

Herhangi bir düşme yüksekliği kısıtlaması olmaksızın çalışma yüzeyi açısı 30° den az ise veya

Düşme yüksekliği 2 metreden az ve çalışma yüzeyi açısı 60° den az ise tercih edilebilir.

Sınıf C kenar koruma sistemi

Kenar korumunun eğimi Şekil 3.4.’te AC dikey çizgisi ile yüzeye dik olan BC çizgisi arasında olmalıdır.

Sınıf C kenar korumadaki herhangi bir boşluğun 10 cm çapında bir kürenin geçemeyeceği şekilde olması sağlamalıdır.
NOT: Sınıf C kenar koruma;

Herhangi bir düşme yüksekliğini kısıtlamasızın çalışma yüzeyi açısı 30° ile 45° arasında ise veya

Düşme yüksekliği 5 metreden az ve çalışma yüzeyi açısı 45° ile 60° arasında ise tercih edilebilir.**

** Çalışma yüzeyi açısı 60° den fazla ise veya 45° den fazla ve düşme yüksekliği 5 metreden fazla ise kenar koruma sistemleri korunma amaçlı kullanım için uygun değildir.

Kullanılacak malzemeler ilgili standartların kriterlerini karşılamalı, yeterince dayanıklı ve kalıcı olmalıdır. Malzemeler saflığı bozacak unsur ve çeşitli kusurlardan uzak olmalıdır.

En sık kullanılan malzemeler, geçici iş ekipmanlarına dair malzeme bilgilerini içeren TS EN 12811-2 standardına uygun olmalıdır.

Güvenlik ağları ile ilgili malzeme gereksinimleri için TS EN 1263-1 Standardı dikkate alınmalıdır.

Birleştirme elemanları/kelepçeler için ise TS EN 74 Standartları baz alınmalıdır.

Ahşap malzemelerin mukavemeti TS EN 338 Standardına göre sınıflandırılmış olmalı ve işgne yapraklı veya kavak ağaçından elde edilen masif ahşap için asgari C16 sınıf olan malzeme kullanılmalıdır. Koruyucu kaplama olması durumunda bunun malzemenin görsel incelemesine engel olmaması sağlanmalıdır.
3.1.2. Kapak Sistemleri

Çalışma yüzeyinde sürekli oluşturulan ve çalışanın ya da malzemelerin düşmesine yol açabilecek her türlü boşluğa karşı önlem alınmalıdır.

Merdiven, asansör, baca, aydınlatma vb. boşluklar ile çalışma alanı ve geçiş güzergâhlarındaki tüm açıklıkların etrafi korkuluk/bariyerler ile çevrilmeli ya da dayanıklı kapak vb. malzemeler ile kapatılarak güvenli hale getirilmelidir. Şekil 3.6. da görüldüğü gibi boşluğun sağlam şekilde kapatıldığından ve kullanılan kapatma malzemesinin hareket etmeyecek şekilde sabitlendiğinden emin olunmalı, çalışanlar gerekli işaret levha ve yazılar ile uyarılmalıdır.

3.1.3. Hareketi kısıtlayıcı Sistemler (HKS)

Yüksekten düşmeyi çalışanın düşme riski olan alanlara (korumazkenarlar vb.) erişimini engelleyerek önleyen sistemlerdir. HKS çalışanın belirlenmiş bir alan içinde hareket edebilmesine müsaade eder. Çalışan tam vücut emniyet kemer ve güvenlik halatı ile ankraj noktasına ya da yaşam hattına bağlanmaktadır [5].

Ankraj noktalarının seçimi, hareket alanı ve muhtemel düşme noktaları sistem uygulanmadan önce iyi şekilde gözden geçirilmeli, planlama yapılmalı ve gerektiğinde Şekil 3.8. de gösterildiği şekilde korkuluk sistemleri gibi diğer düşmeye karşı koruyucu sistemler de ilave olarak uygulanmalıdır.

Şekil 3.6. Kapak sistemi [12]

Şekil 3.8. Korkuluk ve HKS ile düşmeye karşı koruma
3.2. ÇALIŞMA KONUMLAMA SİSTEMLERİ

Bu sistem, çalışanın emniyet kemer ve güvenlik halati aracılığıyla desteklenmek suretiyle yasalara bıraklarak çalışmasına olanak sağlamaktadır ve çalışan hareketini kısıtlayarak düşmenin önüne geçmektedir (Şekil 3.9).

3.3. DÜŞMEYİ DURDURUCU SİSTEMLER

3.3.1. Güvenlik Ağları

Güvenlik ağı; bir kenar (sınır) ipli, diğer destekleme elemanları veya bunların birleşimi ile desteklenen, yüksekten düşen kişileri yakalamak için tasarlanmış bir ağ olarak tanımlanmaktadır (Şekil 3.10).

Mevzuatımızda göre, kullanılan güvenlik ağlarının; malzeme özellikleri, yapılan statik ve dinamik dayanım deneyleri ile bağlantı ve kurulum şartları bakımından TS EN 1263-1 ve TS EN 1263-2 standartlarına ve ilgili diğer ulusal standartlara uygun olması gerekmektedir [1].

Güvenlik Ağı Çeşitleri

Güvenlik ağı sistemleri fiziksel özelliklerine göre S tipi, T tipi, U tipi ve V tipi olmak üzere dört çeşit olup Şekil 3.11 de görüldüğü gibidir. [15]:

- **Sistem S**: Kenar ipli olan güvenlik ağı
- **Sistem T**: Yatay kullanım için konsollara bağlanan güvenlik ağı
- **Sistem U**: Çöl kullanım için destek yapısına bağlanan güvenlik ağı
- **Sistem V**: Bir sehpa tipi desteğe bağlanan kenar ipli olan güvenlik ağı
Güvenlik Ağının Etiketlenmesi

Güvenlik ağları; imalatçının veya ithalatçının adı veya ticarî markası, standarda uygun tanıtmı işaretleri ve tanıtmı numarası, ağın imal edildiği ay ve yıl, deney numunesinin asgari enerji emme kapasitesi, imalatçının kodu gibi bilgileri içeren bir etiketle işaretlenmelidir. Ağ etiketi, ağın ömrü boyunca kalıcı olarak şekilde ağa yerleştirilmelidir.

Düşme Yüksekliği

Güvenlik ağ, çalışma platformuna mümkün olduğunca amaçına uygun şekilde yakın kurulmalı ve bu sayede düşme yüksekliği mümkün olan en az mesafede tutulmalıdır. Standarda göre izin verilen azami düşme yüksekliği 6 metredir [16]. Bu yükseklik, çalışanın ağırlık merkezi dikkate alındığında 7 metrelik bir nominal düşme yüksekliğini teşkil etmektedir. Şekil 3.12’de belirtilen H_a ve H_i düşme yüksekliklerinden her biri 6 metreyi kesinlikle geçmemelidir [17].

Şekil 3.11. Güvenlik ağı sistem tipleri

Şekil 3.12. İzin verilen düşme yükseklikleri (Eğim $\leq 20^\circ$)
Yakalama Genişliği

Çalışan kişi hareket ettiği sırada bir yere takılrsa, aşağı doğru düşmenin yan sıra ileri doğru bir düşmeye de maruz kalmaktadır. İleri doğru düşme mesafesi, düşme yüksekliğinden etkilenmektedir. Çalışma platformunun kenarında koruma sağlayan güvenlik ağları, düşen kişinin ileri doğru hareketini kapsayacak şekilde geniş olmalıdır. Çalışma platformunun kenarı ile güvenlik ağının dış kenarı arasındaki net genişlik, yakalama genişliğini ifade etmektedir (Şekil 3.13) [17].

<table>
<thead>
<tr>
<th>Azami düşme yüksekliği, He (m)</th>
<th>TS EN 1263-2′ye göre asgari yakalama genişliği, b (m)</th>
<th>* BS 8411’de tavsiye edilen yakalama genişliği (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3,5</td>
</tr>
<tr>
<td>3</td>
<td>2,5</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>4,5</td>
</tr>
</tbody>
</table>

* BS 8411 Code of practice for safety nets on construction sites and other works (İnşaat sahaları ve diğer işlerde kullanılan güvenlik ağları için uygulama esasları)

3.3.2. Hava Yastıkları

Hava yastıkları yüksekte çalışma yürüttülen bir alanın altında kurularak olası bir düşme durumunda düşmenin çalışan üzerindeki etkisini azaltır ve yaralanma ihtimalini azaltır. Her iki uygulamada da yastıklar zemine aralarında boşluk kalmayanak biçimde yan yana yerleştirilerek yüksekte çalışma yapılan alanın altı kaplanır.

BS 8411 Code of practice for safety nets on construction sites and other works (İnşaat sahaları ve diğer işlerde kullanılan güvenlik ağları için uygulama esasları)

* BS 8411′de tavsiye edilen yakalama genişliği (m)

<table>
<thead>
<tr>
<th>Azami düşme yüksekliği, He (m)</th>
<th>TS EN 1263-2′ye göre asgari yakalama genişliği, b (m)</th>
<th>* BS 8411′de tavsiye edilen yakalama genişliği (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3,5</td>
</tr>
<tr>
<td>3</td>
<td>2,5</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>4,5</td>
</tr>
</tbody>
</table>

* BS 8411 Code of practice for safety nets on construction sites and other works (İnşaat sahaları ve diğer işlerde kullanılan güvenlik ağları için uygulama esasları)

3.3.2. Hava Yastıkları

Hava yastıkları yüksekte çalışma yürüttülen bir alanın altında kurularak olası bir düşme durumunda düşmenin çalışan üzerindeki etkisini azaltır ve yaralanma ihtimalini azaltır. Her iki uygulamada da yastıklar zemine aralarında boşluk kalmayanak biçimde yan yana yerleştirilerek yüksekte çalışma yapılan alanın altı kaplanır.

BS 8411 Code of practice for safety nets on construction sites and other works (İnşaat sahaları ve diğer işlerde kullanılan güvenlik ağları için uygulama esasları)

* BS 8411′de tavsiye edilen yakalama genişliği (m)

<table>
<thead>
<tr>
<th>Azami düşme yüksekliği, He (m)</th>
<th>TS EN 1263-2′ye göre asgari yakalama genişliği, b (m)</th>
<th>* BS 8411′de tavsiye edilen yakalama genişliği (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3,5</td>
</tr>
<tr>
<td>3</td>
<td>2,5</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>4,5</td>
</tr>
</tbody>
</table>

* BS 8411 Code of practice for safety nets on construction sites and other works (İnşaat sahaları ve diğer işlerde kullanılan güvenlik ağları için uygulama esasları)

3.3.2. Hava Yastıkları

Hava yastıkları yüksekte çalışma yürüttülen bir alanın altında kurularak olası bir düşme durumunda düşmenin çalışan üzerindeki etkisini azaltır ve yaralanma ihtimalini azaltır. Her iki uygulamada da yastıklar zemine aralarında boşluk kalmayanak biçimde yan yana yerleştirilerek yüksekte çalışma yapılan alanın altı kaplanır.

BS 8411 Code of practice for safety nets on construction sites and other works (İnşaat sahaları ve diğer işlerde kullanılan güvenlik ağları için uygulama esasları)

* BS 8411′de tavsiye edilen yakalama genişliği (m)

<table>
<thead>
<tr>
<th>Azami düşme yüksekliği, He (m)</th>
<th>TS EN 1263-2′ye göre asgari yakalama genişliği, b (m)</th>
<th>* BS 8411′de tavsiye edilen yakalama genişliği (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3,5</td>
</tr>
<tr>
<td>3</td>
<td>2,5</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>4,5</td>
</tr>
</tbody>
</table>

* BS 8411 Code of practice for safety nets on construction sites and other works (İnşaat sahaları ve diğer işlerde kullanılan güvenlik ağları için uygulama esasları)
Yastıklar çeşitli boyutlarda temin edilerek zemin tamamen kapatılabilir.

Hava yastığı sisteminin en yaygın kullanım alanı konut inşaatları olmakla beraber güvenlik ağı kurulumunun mümkün olmadığını küçük alanlarda ya da çalışma platformlarının dış kenarlarında da kullanılabilmektedir.

Yumuşak dolgulu yastıklar kullanılıyorsa düşme yüksekliklerinin 2 metreden fazla olmaması tavsiye edilmektedir. Ancak ikinci bir hava yastığı seviyesi daha oluşturularak düşme yükseklikleri üretici talimatlarına bağlı kalınmak koşuluyla artırılabilir.

Hava ile şişirilmiş yastıkların kullanımında da yastıklar çalışma yüzeyine mümkün olduğunca yakın olacak biçimde (düşme yüksekliği asgari olacak şekilde) ve düşme yüksekliği için üretici talimatlarının belirlediği değerleri aşmayacak şekilde yerleştirilmelidir.

Şekil 3.15. Hava yastığı sistemi [18]
3.3.3. Yakalama Platformları

Yakalama platformları, çalışma alanının altında kurulan ve muhtemel bir düşme durumunda çalışanı tutmak için kullanılan geçici platformlardır. Bu platformlar muhtemel azami darbe yükünü karşılayacak nitelikte olmalıdır. Sabit veya hareketli yakalama platformlarının inşa edilmesinde iskele bileşenleri kullanlabilmektedir [20].

Yakalama platformu ile ilgili dikkat edilecek bazı hususlar şunlardır:

- Döşemesi tamamen kapatılmış olmalıdır.
- Çalışma alanına mümkün olduğunca yakın olmalıdır.
- Kenar koruması sağlanmış olmalıdır.
- Ekipman, malzeme ve atıklardan temizlenmiş olmalıdır.
- Çatı gibi eğimli bir çalışma yüzeyine ait projeksiyonun yakalama platformunun korkuluğu ile kesiştiği noktasın üst tarafında yeterli korkuluk yüksekliği olduğundan emin olunmalıdır.

3.3.4. Kişisel Düşmeyi Durdurucu Sistemler

Kişisel düşmeyi durdurucu sistemler (KDDS) serbest düşmeyi durdurman ve düşmenin çalışan üzerindeki etkilerini sınırladıran düşmeyi durdurucu sistemlerdir [5]. Bir KDDS;

- Çalışanın düşmesini önlemez.
- Düşme mesafesini sınırlar.
- Düşme riskinin bulunduğu çalışma alanına erişime izin verir (düşme olursa durdurulur).
- Düşüktken sonra askıda kalmayı sağlar.
Kişisel düşmeyi durdurucu sistemler çalışanın kontrolsüz yüksekliklerden düşmelerini engeller ve düşmenin etkilerini azaltır. Şekil 3.17 de görülen KDDS’ler genellikle 3 temel bileşenden meydana gelir [5,21];

- Ankrajlar
- Vücut desteği
- Bağlantılar

Kişisel düşmeyi durdurucu sistemler çalışanların işlerini korumasız kenarlarda ya da stabil olmayan platformlarda (asma iskele vb.) yürüttüğü çalışmalarda kullanılır. KDDS kullanılırken dikkat edilmesi gereken hususlar [5];

- Düşmenin çalışan üstündeki etkinin ve durdurmadaki salımın en az düzeyde kalmasının sağlanması için sistem, düşme yüksekliğinin asgari düzeyde tutulacağı biçimde oluşturulmalıdır.

- Sistemin bütün bileşenleri her kullanım öncesinde gözle kontrol edilmeli; yıpranmış, eskimiş parçalar mutlaka değiştirilmelidir.

- Bağlantı tertibatlarının korkuluklara ve iskele bileşenlerine takılmasından mümkün olduğunca kaçınılmalı varsa daha uygun ankraj noktaları tercih edilmelidir.

- KDDS kullanan çalışanın herhangi bir acil durum olasılığı sebebi ile başka bir çalışan tarafından kontrol/eşlik edildiğine dikkat edilmelidir.

- KDDS; sadece bir defa düşmeyi durdurmak üzere tasarlanmış sistemlerdir. Herhangi bir düşme durumunda bütün KDDS bileşenleri yetkin bir kişi tarafından detaylı olarak incelenir. İnceleme sonucunda zarar görmemiş ve tekrar kullanılabileceği dair rapor hazırlanıp imzalanmadığı takdirde bu KDDS kullanımdan çıkartılır.
Kısıtlamalar

Bu sistemlerde düşme sonucunda çalıştanda bazı fiziksel hasarlar söz konusu olabilmektedir. Bu sebeple KDDS’ler diğer düşme önleme yöntemlerinin makul biçimde uygulanabilir olmadığı durumlarda tercih edilmelidir.

Bir KDDS serbest düşmenin gerçekleşmesi ve durdurulması durumunda çalışan üzerinde oluşacak kuvvetin 6 kN’dan fazla olması için enerji emici bileşenler ya da fonksiyonlar içermelidir.

Azami düşme mesafesine KDDS bileşenlerinin üreticilerinden temin edilmiş bilgiye dayanılarak karar verilmelidir. Gereklı hallerde ankraj tertibatının etkileşimi de göz önune alınmalıdır.

Yetersiz düşme yüksekliklerinin söz konusu olduğu noktalarda kısa bağlama tertibatı ya da geri sarmalı tipte düşmeyi önleme tertibatı kullanılabılır.

Azami Düşme Mesafesi (ADM)

KDDS kullanan bir çalışanın düşmesi halinde herhangi bir cisme ya da zemine çarpmadan durması için gerekli olan ve düşme olayından önce çalışan ile zemin arasındaki mesafeyi ifade eder (Şekil 3.18). İlgili standartlarda tavsiye edilmiş mesafeler [23,24];

a. **Tam Vücut Tipi Emniyet Kemerı, Bağlama Tertibati ve Enerji Emici Kullanıldığında;**

\[ADM = 2L_t + 1.75 \text{ m} + 1 \text{ m} \] (Güvenlik mesafesi)

\[L_t: \] Üretici bilgilerine dayanarak enerji emici dahil bağlanı tertilbatının uzunluğu

b. **Geri Sarmalı Tipte Düşme Önleme Tertibati Kullanıldığında**

\[ADM = 2m + 1 \text{ m} \] (Güvenlik mesafesi)

NOT: Bu hesaplamalar yapılırken tam vücut tipi emniyet kemerinin esneme miktarı ve kullanılmışsa yaşam hattının esneme mesafesi ADM değerine ilave edilmelidir.
KDDS kullanacak çalışanlar tam vücut tipi emniyet kemerinin doğru kullanımı ve bağlanması, ekipmanın muayenesi, bakımı ve saklanması, doğru ankraj seçimi ve uygulaması ile acil durum prosedürleri hakkında bilgilendirilmeli ve gerekli eğitim verilmelidir.
Eğitim sonrasında çalışanların ekipmanı güvenli kullanıp kullanmadıkları uygulamalı olarak değerlendirilmeli ve uygun personel ile çalışmalar yürütülmelidir.

Salınım Tehlikesi

KDDS kullanımında en ciddi tehlike Şekil 3.20 de resmedildiği gibi salınım tehlikesidir. Buna sarkaç etkisi de denilmektedir.

Yanlış ankraj noktası belirlenmesi ya da ilave tedbir alınmaması neticesinde iki şekilde salınım tehlikesi söz konusu olabilmektedir.

Birincisi, korumasız bir kenardan düşülmesi neticesinde salınım yolu üzerinde bir engele ya da bağlantı yapılmış olan yapıya çarpılması; diğerisi ise yine korumasız kenardan düşülmesi ile halatın yapı kenarına sürünmesi ile halat kopması sonucu zemine çarpılması ya da halatın uzun olması sebebiyle zemine çarpmasıdır.

KDDS kullanılacak alanlar iyi değerlendirilmeli ve salınım tehlikesi söz konusu olduğunda KDDS kullanımı tekrar gözden geçirilmeli ya da ilave tedbirlar alınmalıdır.

![Şekil 3.20. Salınım tehlikesi](imageurl)
4. YÜKSEKTE ÇALIŞMA EKİPMANLARI

Gerekli erişimin sağlanabilmesi ve dolayısıyla yüksekte çalışma gerektiren işlerin yerine getirilebilmesi amacıyla kullanılan ve yatay ve/veya düşey yönde hareket ettirilebilen ya da sabit ekipmanlardır. Bazı ekipmanları şunlardır:

- İşkeleler (TS EN 12810, TS EN 12811)
- Merdivenler (TS EN 131-1)
- Yükseltilebilir seyyar iş platformları (TS EN 280:2013+A1)
- Sütunlu çalışma platformları (Cephe platformları) (TS EN 1495+A2)
- Hareketli iskeleler/Erişim kuleleri (TS EN 1004, TS EN 1298)

4.1. İSKELELER

Binaların ve diğer yapıların inşa, bakım, onarım ve yıkım işleri gibi çalışmalarında güvenli bir çalışma ortamının sağlanması ve çalışma alanlarına güvenli erişim için standartlara uygun iskeleler kullanımalıdır.

Kullanılacak iskeleler TS EN 12810-1 standardına uygunluk açısından Türk Standartları Enstitüsünden belgelendirilmiş olmalıdır. Bu nedenle iskele kurulumunda çalıştırılacak personel; konu ile ilgili yeterli bilgi ve deneyime sahip ve “İskele Kurulum Elemanı (Seviye 3)” Ulusal Yeterliliğine sahip olmalıdır.

İskele kurulumu esnasında üreticiden temin edilmiş olan “Mamul El Kitabı” dikkate alınmalı ve kurulum sıralaması ve diğer hususlarda bu kurallara uyulmalıdır. Aynı zamanda kullanılacak iskele, çevre şartları (iskele yakınında enerji hattı olup olmadığı, iskele zemini etkileyebilecek kazı çalışmalarının mevcudiyeti vb.) ve yüksekte çalışmalarla ilgili bilgileri içeren “Kurma, kullanma ve sökme planı” da uygulanarak azami güvenlik şartları sağlanmalıdır.
Önemli hususların kontrolü:

- İskelenin kurulduğu zemin
- Taban plakası ve yüksekliği
- Çapraz destekler
- Ayak hızındaki boyuna ara bağlantılar
- Kafes kirişler
- Ankrajin mamul el kitabına uygunluğu
- Platformda kullanılan malzemenin yeterliliği
- Platform birimlerin yerleşimi, sabitlenmesi
- Platformlar arasının boşluk kalmayacak biçimde olması
- İskelenin yapı köşelerinde tam genişlikte ve yapıyı saracak şekilde dönmesi
- Düşmelerin önlenmesi için ana ve ara korkuluklar
- İskelle-yapı arası mesafenin düşmeye sebebiyet vermeyecek biçimde olması
- İskelle-yapı arası mesafe fazla ise iç tarafta ana, ara korkuluklar ve topuk tahtası
- Güvenli erişim sisternleri (merdivenler)
- Çatı korumaları
- Yayalar için iskele altında geçit ve aydınlatma
- Araç trafiği güvenliği ve aydınlatma
- Gece çalışmalarında yeterli aydınlatma
- İskelle girişlerinde işaretlemeler
- Tamamlanmamış iskeleye girişlerin engellenmesi için “Yetkisiz Kimse Giremez” şeklinde işaretleme yapılması
4.2. MERDİVENLER

Merdivenler yüksekte ya da aşağıda bulunan seviyelere erişimin sağlanması ve hafif işlerin yerine getirilmesinde kullanılan ekipmandır. El merdivenleri, A tipi merdivenler, platformlu merdivenler, sabit dik merdivenler, sürgülü ve akrobat merdivenler vb. birçok çeşit merdiven bulunmaktadır. (Detaylı bilgi için TS EN 131-1 Standardından faydalanılabilir.)

Merdivenler; yükseltilen iş platformları, iskele sistemleri ve geçici platformlar gibi diğer yüksekte çalışma ekipmanlarının kullanımı uygulanabilir değilse değerlendirilmelidir. Bu değerlendirmede kısa süreli ve düşük riskli işler dikkate alınmalıdır. Merdiven kullanımda aşağıdaki hususlar göz önünde bulundurulmalıdır [26]:

- Hasar görmüş, kırılmış, çatlamış, bükümüş ya da paslanmış olan, yapısal olarak sağlam ve yeterli görülmeyen ve bileşenlerinde (basamak, platform, çapraz, bağlantı elemanları vb.) eksiklikleri bulunan merdivenler kullanılmamalıdır.
- Merdivenin yapılan işe uygun ve yeterli yükseklikte olduğundan emin olunmalıdır.
- Merdivenin sağlam ve kaymaz bir zemine yerleştirilmesi sağlanmalıdır.
- Çalışmanın ya da merdivenin enerji hatlarına temasın söz konusu olabileceği yerlerde merdiven kullanılmamalı ve elektrikli ekipmanların yanında metal bileşenlerden oluşan merdivenlere özellikle dikkat edilmelidir.
- Merdiven yerleştirileceği bölgenin araç ya da yaya geçiş yollarında, kapı geçişlerinde veya asıtlı yüklerin hareket güzergâhlarında olmamasına dikkat edilmelidir.
- Merdivenler açık kenarlara yakın ya da iskele vb. ekipmanların üzerinde ekstra yükseklik kazanmak için kullanılmamalıdır.
- Merdiven üzerinde uzun süreli çalışma yapılmamalıdır.
- Çalışmanın yüzü merdiven döndük olmalıdır.
- Üç nokta temasına dikkat edilmeli, merdiven çıkarken ya da merdivenden inerken elde malzeme ya da alet taşınmamalıdır (Şekil 4.3).
Merdiven dışına uzanılmamalı, ağırlik merkezinin merdiven kolları arasında kalmasına dikkate edilmalıdır.

Kaymaya dirençli iş ayakkabısı kullanımı dikkate alınmalıdır.

Merdiven ayaklarının kendiliğinden hareket etme ya da kaymaya karşı güvenli olması önem verilmeli; bağlama, kazık çekme vb. çeşitli yöntemler ile sabitlenmelidir.

El merdivenleri en üst basamaklarında çalışılacak şekilde yerleştirilmemelidir.

Şekil 4.3. Merdivende 3 nokta kuralı [28]

- Merdivenin dayandığı nokta ile zemin arasındaki düşey mesafe ve merdivenin yatay çekme mesafesi arasında 4'e 1 oranının sağlanması dikkate edilmelidir.

Çalışma platformuna geçiş için kullanılan merdivendeki nokta ile zemin arasındaki düşey mesafe ve merdivenin yatay çekme mesafesi arasında 4’e 1 oranının sağlanması dikkate edilmelidir.

Şekil 4.4. de gösterildiği şekilde el merdiveni yerleştirilirken çalışma kolaylığı sağlayacak uygun bir açıda yerleştirilmelidir. Uygulanabilir olduğunda, merdivenin dayandığı nokta ile zemin arasındaki düşey mesafe ve merdivenin yatay çekme mesafesi arasında 4’e 1 oranının sağlanması dikkat edilmelidir.

Çalışma platformuna geçiş için kullanılan merdivendeki nokta ile zemin arasındaki düşey mesafe ve merdivenin yatay çekme mesafesi arasında 4’e 1 oranının sağlanması dikkat edilmelidir.

A tipi merdivenler kullanıldığında önce tamamen açımlmalıdır. Ayakların birbirinden ayrılması önleyen tertibatın sağlam olduğundan ve merdivenin kullanım boyunca açık şekilde kalacağından emin olunmalıdır.

Merdiven kullanımında hava koşulları dikkate alınmalıdır.

Platfromlu ve A tipi merdivenlerde yapılan iş ya da çevre koşullarından kaynaklanabilecek ve devrilmeye sebep olabilecek yatay kuvvetlere dikkat edilmelidir.

Ark kaynağı ve oksijenli kesim gibi işlerin merdiven üzerinde yapılmasını güvenli olmayaçağı dikkate alınmalıdır.

Merdivenler her kullanımdan sonra kontrol edilmelidir.
4.3. YÜKSELTLİLEBİLEN SEYYAR İŞ PLATFORMLARI

Etrafı düşmeye karşı kenar koruma sistemi ile çevrili bir platformdan oluşan ve ulaşmak istenen çalışma yerine uzatılabilen seyyar ekipman olarak tanımlanabilir [5].

Yükseltilebilen iş platformlarına; makaslı kaldırmalar, dikey platformlar ile araç üzerine monte ya da kendinden hareketli teleskopik ve eklemli platformlar örnek olarak verilebilir.

Aşağıdaki görselde soldan sağa sırasıyla; makaslı kaldırma, ekmeli platform ve dikey platform gösterilmektedir.

Şekil 4.5. Yükseltilebilen seyyar iş platformları [5]

Bu ekipmanların kullanımından önce detaylı bir planlama yapılmalıdır. Çalışılacak çevre ve zemin koşulları incelenmeliidir.

İş platformlarının kaldırma kapasiteleri, erişim yükseklikleri vb. özelliklerinin farklı olabileceği ve bazlarının düz ve sert zeminler için tasarlanırken bir kısmının engebeli arazi koşulları için tasarlanabileceği dikkate alınmalı ve en uygun yükseltilebilen seyyar iş platformu seçilmelidir.

İçten yanmalı motorla çalışan ekipmanların ise bina içlerinde ya da havalandırmanın yetersiz olduğu yerlerde kullanılmamasına ayrıca önem verilmelidir.
Yükseltilebilen seyyar iş platformları ile ilgili olarak aşağıdaki hususlara dikkat edilmelidir [5]:

- Operatörler gerekli yeterliliğe sahip olmalıdır.
- Operatörlerin ilgili ekipman, düşmeyi durdurma ekipmanları ve acil durum prosedürleri ile ilgili eğitim aldığından emin olmalıdır.
- Taşıma kapasitesinin açık bir şekilde gösterildiğinden ve operatör tarafından bilindiğinden emin olmalıdır.
- Yetkili kişi tarafından her bakımdan iyi durumda ve kullanıma hazır olduğu tayt edilmelidir.
- Ekipmana özel üretici talimatları ve ekipmanın tasarım amacı iyi bilinmelidir.
- Taşıma kapasitesinin açık bir şekilde gösterildiğinden ve operatör tarafından bilindiğinden emin olmalıdır.
- Yetkili kişi tarafından her bakımdan iyi durumda ve kullanıma hazır olduğu tayt edilmelidir.
- Ekipmana özel üretici talimatları ve ekipmanın tasarım amacı iyi bilinmelidir.
- Engebeli arazide kullanılmak üzere tasarlanmamışsa, sert ve düz zemin üzerinde kullanılmalıdır.
- Engebeli arazide kullanılmak üzere tasarlanmamışsa, sert ve düz zemin üzerinde kullanılmalıdır.
- X Hareket yolları üzerinde, kontrolsüz harekete ya da devrilmeye neden olabilecek tehlikelere karşı tedbir alınmalıdır.
- Üstten geçen enerji hatları ile ilgili riskler mutlaka göz önünde bulundurulmalıdır.
- Ekipmanın diğer araç yollarına uzanmaması, girmemesine dikkat edilmeli; hareket alanlarının diğer araçlar ile kesişmememesine özen gösterilmelidir. Gerektiğinde bariyerler, işaret levhaları ile tedbir alınmalıdır.
- Şekil 4.6. da gösterildiği şekilde operatör tarafından yükseklik kazanmak amacıyla korkuluklara basarak tırmanılmamalı, her iki ayak da platform üzerinde olmalıdır.

Şekil 4.6. Platformda doğru çalışma [5]

- Platform içerisinde yer alan tüm çalışanların, hareket alanını sınırlandıran ve yüksekte çalışma için uygun kişisel koruyucu donanımlara sahip olduğundan emin olmalardır.
- Çalışanların kendilerini, üretici tarafından tasarruştan ve platform üzerindeki belirli ankraj noktalarına bağlaması sağlanmalıdır.
4.4. SÜTUNLU ÇALIŞMA PLATFORMLARI

Farklı yüksekliklerde, yapı profilinde değişikliklerin (Örn. Balkon varlığı sebebi ile çıkıntı yüzeyler ya da yapının içeri doğru giriş yapması) olması bu ekipmanların kullanım alanını kısıtlayabilen unsurlardır.

Sütunlu çalışma platformları ile ilgili olarak aşağıdaki hususlara dikkat edilmelidir [5]:

- Kurulum ve söküm çalışmaları yetkili kişi kontrolü altında yapılmalıdır.
- Platform içine yerleştirilen malzemeler ekipman dışına uzanmamalı ve böylece bu malzemelerin düşmesinin önüne geçilmelidir.
- Ekipman nitelikleri (kapasite, ölçüller) ile kurulum, kullanım ve söküm çalışmalarında mutlaka üretici talimatları dikkate alınarak hareket edilmelidir.
- Operatörler yetkin olmalı ve çalışma platformu içindeki çalışanlar, bağlantısı yeterli şekilde yapılmış tam vücut emniyet kemer ve baret ile çalışmalarını sürdürümelidirler.

Şekil 4.7. Sütunlu çalışma platformunun bileşenleri [5]
4.5. ERİŞİM KULELERİ

Alüminyum veya çelik sistemlerden oluşan ve Şekil 4.8. de bölümleri ile anlatılan bu ekipmanlar ile ilgili olarak aşağıdaki belirtilen hususlara dikkat edilmelidir.

- Bu ekipmanların kurulumu, sökümü ve incelenmesi yetkili kişiler tarafından ve üretici talimatları dikkate alınarak yapılmalıdır. Üretici talimatlarında belirtilen çalışma yükseklikleri asla aşılmalıdır.
- Kurulum öncesi tüm kule bileşenleri; iyi durumda, kullanıma hazır ve kurulumu yapılacak kuleye ait olduklarının tespiti için gözden geçirilmelidir.
- Kurulum sırasında güvenli çalışma yöntemleri belirlenerek düşmeye karşı tedbir alınmalıdır.

- Kurulenin sert ve düz bir zemin üzerinde kullanıldığından emin olunmalıdır. Çalışma alanındaki çukur, çöküntü ve engebeli noktalara dikkat edilmeli ve tedbir alınmalıdır.
- Kule ayaklarında kilitlenebilir tekerlekler kontrol edilmelidir. Tekerleklerin zarar görmemiş olduğundan, etkin bir biçimde dönebildiğinden ve durdurma/kilit mekanizmasının çalıştığından emin olunmalıdır.
Tekerlekleri kilitlemeden çalışanların kuleye çıkmasına izin verilmemelidir.
Üretici talimatları doğrultusunda sabitleyici/dengeleyiciler monte edilmelidir.
Kule stabilitiesinin kolayca etkilenebileceği dikkate alınarak; kuvvetli rüzgarlarda kullanma ya da etrafına kaplama yapma, ağır malzemeleri kule üzerine yerleştirmme ve kuleyi malzeme kaldırımda kullanma vb. gibi tehlikeli hareketlerde bulunulmamalıdır. Kullanım koşulları, sınır değerler ve kapasite ile ilgili olarak üretici talimatlarına başvurulmalıdır.
Çalışma alanında üstten geçen hatların varlığına dikkat edilmelidir. Gerekli tedbirler alınmadan kullanıma geçilmemelidir.
Kule platformlarına erişimin merdiven ile sağlanmadığdan emin olunmalıdır.
Kulenin ileri geri hareket ettirilmesi kule zemininden ve çalışanlar tarafından el ile yapılmalıdır. Motorlu araç kullanılmamalıdır.
Halka açık alanlarda yapılan çalışmalarında bariyerler ve uyarı levhaları aracılığıyla yetkisiz kişilerin kuleye çıkış ve kule çevresine yaklaşması önlenmelidir.
Düşmeye karşı korkulukların kule çevresi boyunca ve her çalışma platformu kenarında mevcut olduğundan emin olunmalıdır.

5. İYİ UYGULAMA ÖRNEKLERİ

Şekil 5.1. de hareketi kısıtlayıcı sistem ile düşmeye karşı koruma anlatılmaktadır. Görüldüğü üzere inşaat alanında katta malzeme alımı için korkuluklar geçici olarak kaldırılmıştır. Çalışan, malzeme alımı için kendisini hareketi kısıtlayıcı bir sistem vasıtasıyla korumaya almış, böylelikle kat kenarına yaklaşması ve düşmesi önlenmiştir.

Şekil 5.2. de üst raflarda yer alan ürünlerle ulaşmak için çalışan kişi korkuluğu bulunan basamaklı bir platform kullanımın ve düşmeye karşı tedbirini bu şekilde sağlar. Şekil 5.3. de elektrikli matkap ile delme işi yapan çalışan, rahat bir şekilde çalışabilmek ve yan yüklemenin etkisiyle merdivenin devrilmesini ve düşmesini önlemek için merdiveni çalışma yüzeyine bakacak şekilde konumlandırmıştır.

Şekil 5.1. Hareketi kısıtlayıcı sistem ile düşmeye karşı koruma [5]

Şekil 5.2. Platformlu merdivende çalışma [10]

Şekil 5.3. Merdivenin yerleştirilmesi [10]
Şekil 5.4. de ise inşaatta döşeme kalıplarını yerleştiren çalışanın, alt katta düşmesini önlemek için daha önceden kolonlara saplanmış olan ekipmanlara muhtemel bir düşme anında kilitlenen geri sarmalı tipte düşmeyi durdurucu ile bağlaması ve kendisini korumaya alması görülmektedir.

Araç üzerine boruları yerleştiren çalışanlar, düşmelerini önlemek için araç uzunluğu boyunca hareket imkanı sağlayan, raylı bir sistem sahip ekipmana kendilerini bağlamaları ise Şekil 5.5. de gösterilmektedir.

Kazı çevresi boyunca geçici kenar koruma sistemleri yerleştirilmiş ve çalışanların kazı içerisine düşmesi önlenmiştir (Şekil 5.6).
Şekil 5.7. de yürütülmeekte olan çatı çalışmasının güvenli bir şekilde sürdürülebilmesi için boşluk kalmayacak şekilde çatı kenarları boyunca kenar koruma sistemleri yerleştirilmesi ve düşmeye karşı koruma sağlanması gösterilmektedir.

Eğimli çatıda yapılacak çalışmanın güvenli şekilde yapılabilmesi, planlama aşamasında monte edilen yatay yaşam hattı ve ankray noktaları aracılığı ile sağlanmıştır. Çalışan tam vücut kemer sistemi giyerek lanyard ile hatta bağlantısını sağlamıştır (Şekil 5.8).

Şekil 5.9. da iskele kurulumu gerçekleştiren çalışanlar düşmeye karşı güvenliklerini sağlamak için geçici korkuluklar kullanmışlardır. Alt kat seviyesinden monte edilebilen bu sistem ile üst kata çıkan çalışan, iskele sisteminin kendi korkulukları takılana kadar düşmeye karşı tedbirini almıştır.

Şekil 5.7. Çatı çalışmasında düşmeye karşı koruma [34]

Şekil 5.8. Yaşam hattı ile düşmeye karşı koruma [35]
Şekil 5.10 da görüleceği üzere çalışma yapılan en üst katta, kat kenarları düşmeye karşı korkuluklarla kapatılmış ve akabinde çalışma yapılan yüzeye yakın olacak şekilde çalışılmakta olan platformunun hemen altına Sistem T güvenlik ağı kurularak çalışanların düşmeye karşı güvenliği sağlanmıştır.

Şekil 5.10. Güvenlik ağı ile düşmeye karşı koruma [36]

Şekli 5.1. de kat merdivenlerinde düşmeye karşı koruma uygulaması gösterilmektedir. Gördüğü gibi kat merdivenlerinin kenarlarına uygun aparatlarla geçici korkuluk sistemleri takılmış ve çalışanların yürüyüş ve geçiş yollarından düşmesi önlenmiştir.

Şekil 5.11. Kat merdivenlerinde düşmeye karşı koruma [37]
6. EKLER

EK-1: Kişisel Koruyucu Donanımlar

Bu ekte; yüksekte çalışma sırasında kullanılan tam vücut kemer sistemleri, bağlantı halatları (lanyard) ve enerji emiciler gibi önemli bileşenler hakkında kısa ve özet bilgiler yer almaktadır. Detaylı bilgi için ilgili standartlara başvurulabilir.

Kişisel Koruyucu Donanımların Kategorizasyon Rehberine Dair Tebliğe göre; Tasarımçı tarafından, ani olarak ortaya çıkabilecek tehlikeleri, kullanıcının zamanında fark edemeyeceği düşünülen durumlarda ve hayati tehlike oluşturarak, sağlığa ciddi şekilde ve geriye dönüşü mümkün olmayacak derecede zarar verebilecek risklere karşı koruma sağlayan, karmaşık yapıdaki kişisel koruyucu donanımlar kategori-III olarak sınıflandırılmaktadır. Dolayısıyla, yüksekten düşmeye karşı kullanılan kişisel koruyucu donanımlar, karmaşık yapılı kişisel koruyucu donanımlardır ve bu sebeple kategori-III sınıflıdadırlar.

Standarta uygun olarak üretilmiş kategori-III sınıfı kişisel koruyucu donanımlarda CE işaretinin ilişirilme iznini veren, yani gerekli kontrolleri gerçekleştirdiğin ürün için ihtiyaç duyulan belgelendirmeyi sağlayan Onaylanmış Kuruluşun kimlik numarası mutlaka bulunmalıdır. 4 haneli olan bu kimlik numarası, AT tip inceleme belgesinin hangi kuruluşça verildiğinin bir işaretidir ve kategori III sınıfı ürünlerde CE işaretinin yakınında mutlaka bulunmalıdır. Yandaki görselde bu durum gösterilmektedir.

Tam vücut kemer sistemi, bağlama tertibatı (lanyard), enerji emici aparatlar, karabina ve tüm bağlayıcılar da bu kapsamda değerlendirilerek, güvenli bir ürün olduğundan emin olunmalıdır.

Ayrıca kullanılan ilgili kişisel koruyucu donanım üzerindeki işaretleme TS EN 365 ‘e uygun olmalı ve herhangi bir metin, satışın yapılacağı ülkenin resmi dilinde verilmeli yani Türkçe kullanım kılavuzu olmalıdır.

Ayrıca kullanılan ilgili kişisel koruyucu donanım üzerindeki işaretleme TS EN 365 ‘e uygun olmalı ve herhangi bir metin, satışın yapılacağı ülkenin resmi dilinde verilmeli yani Türkçe kullanım kılavuzu olmalıdır.

TS EN 365’e uygunluk için işaretlemelerde, kullanılan ilgili KKD üzerinden kullanıcıların imalatçı tarafından temin edilen bilgileri okuması gerektiğini gösteren bir piktogram da yer almalıdır.
1. Tam Vücut Kemer Sistemleri

Tam vücut kemer sistemleri, genel olarak düşmeyi durdurma amaçlı vücut destekleridir. Bir kişinin vücudunun tamamını desteklemek ve takan kişiyi düşme esnasında ve düşme durduktan sonra tutmak için uygun bir şekilde bir araya getirilmiş ve düzenlenmiş kayışlar, bağlantı elemanları, tutturma elemanları veya diğer elemanları içermelidir. TS EN 361 standardına uygun olmalıdır.

Tam vücut kemer sistemi, takan kişiye uymalıdır. Kayışlar konumlarından sapmamalı ve kendiliğinden gevşememelidir. Birincil kayısların genişliği en azından 40 mm ve ikincil kayısların genişliği ise, en azından 20 mm olmalıdır. Tam vücut kemer sisteminin kullanımı süresince düşme önleyici tutturma elemanı/elemanları ağırlık merkezinin üzerinde, göğsün önünde ve/veya takan kişinin arkasında ve/veya her iki omuzunda kalacak şekilde yerleştirilebilir. Şekil 6.1.’de tam vücut kemer sistemi örneği gösterilmektedir.

![Tam vücut kemer sistemi örneği](image)

Şekil. 6.1. Tam vücut kemer sistem örneği [38]

1. Omuz kayışı
2. İkincil kayış
3. Alt destek (Birincil kayış)
4. Uyluk kayışı
5. Çalışma konumlama için bel desteği
6. Ayarlama elemanı (toka)
7. Düşmeyi durdurma bağlantı elemanı (D halkası)
8. Tutturma elemanı
9. Çalışma konumlama için bağlantı elemanı

b “A” harfiyle işaretleme
1.1. Tam Vücut Kemer Sisteminin Gözle Muayenesi

Kullanım ömrünün sürürülmesi ve yüksek performans elde edilmesi için tam vücut kemer sistemleri sık şekilde kontrol edilmeli ve her kullanımdan önce görsel olarak incelenmelidir (Şekil 6.2.). Uzman kişi tarafından aşınma, hasar ve korozyona gibi hususlara karşı düzenli incelemeler yapılmalı ve donanım üzerinde kusurlu/bozuk durumlar tespit edildiğinde bu donanımın kullanımdan kaldırılması sağlanmalıdır.

Tam vücut kemer sistemleri aydınlatmanın yeterli olduğunu bir ortamda üretici talimatları da dikkate alınarak aşağıdaki genel hususlara göre incelemeli ve inceleme tarihi kayıt alta alınmalıdır.

1.1.1 Şeritlerin (Dokuma) İncelenmesi

Şekil 6.3. de kemer sistemlerinin şerit incelemesi gösterilmektedir. Şerit ellerinarasında 15-20 cm olacak şekilde tutulmalıdır. Şerit ters çevrilmiş “U” şeklinde bükmelidir.. Böylece oluşan yüzey gerilmesi, hasarlı lif ve kesiklerin görülmesini kolaylaştıracaktır. Bu prosedür şeridin her iki tarafını da inceleyecek şekilde tüm şerit uzunluğu boyunca sürülmelidir. Bu sayede saçaklanmış (sürtünme sonucu yıpranmış, parçalanmış) kenarlar, kırlmuş lifler, çekilmiş/sökülmuş dikişler, kesikler, yanıklar, aşınmalar ve UV ya da kimyasala bağlı hasarların var olup olmadığını göze nebilecektir.

1.1.2. D Halkaları/Sırt yastıkları

D halkalarını bükmeler, çatlamalar, kopmalar ve pürüzlü ya da keskin kenarlara karşı kontrol edilmelidir. Halkanın serbestçe döndüğünden emin olunmalıdır. D halkasının sirt yastıklarının da hasar görüp görümedigine bakılması önemlidir.

1.1.3. Tokalar

Tokaların ve D halkalarının bağlantılarına özel önem verilmelidir.. Olağandışı yıpranmalara, aşınmış ya da kesik liflere veya tokaların ve D halkalarının bükmüş bozulmalarına dikkat edilmelidir. Böylece tokaların olması gerektiği gibi çalıştığından emin olunur.
1.1.4. Etiketler
Tüm etiketlerin mevcut olduğu ve rahatça okunabildiği kontrol edilmelidir.

1.2. Tam Vücut Kemerlerinin Giyilmesi
Çalışanın rahat bir şekilde işini yürütüebilmesi ve muhtemel bir düşme sonucu çalışan üzerinde oluşacak kuvvetin tüm vücuda dengeli bir şekilde yayılabilmesi için kullanılan tam vücut kemer sisteminin uygun şekilde giyilmesi gerekliidir. Şekil 6.4. de bu sistemin nasıl giyileceği anlatılmaktadır.

![Kemer](image1)

Kemeri arkaında yer alan D Halkasından tutun ve tüm kayış/şeritlerin uygun şekilde sarktığını görmek için kemeri sallayın.

![Göğüs, Bacaklar](image2)

Göğüs, bacak ya da bel şeritleri tokalı / birbirine tutturulmuş halde ise bunları çözün ve şeritleri serbest bırakın.

![Daha sonra](image3)

Daha sonra şeritleri, D Halkası kürek kemiklerinin arasında ve sırtınızın ortasında olacak şekilde omuzlarınızdan geçirin.

![Bacaklar](image4)

Bacaklar arasındaki şeritleri çekin ve uç noktaları birleştirin. Diğer bacak için de aynı işlemi yapın. Bel desteği varsa, bacaklarından sonra bel şeridini birleştirin.

![Göğüs şeridini](image5)

Göğüs şeridini göğüsün ortasında olacak şekilde birleştirin. Omuz şeritleri sıkı olarak şekilde gerginleştirin.

![Tüm şeritler](image6)

Tüm şeritler birleştirildikten sonra, kemer sistemi vücuda güzelce yerleşeceek ve rahat hareket etmeye imkân verecektir. Uzun şeritleri sarkmış halde bırakmayın.

Şekil 6.4. Tam vücut kemerin giyilmesi [41]
2. **Lanyard / Bağlantı halatları / Bağlama tertibatı**

Bağlantı halatları (Lanyard) yüksekten düşmeye karşı koruyucuların önemli bir parçasıdır ve TS EN 354 standardına uygun olmalıdır.

Şekil 6.5. de çift kollu ve tek kollu enerji emici içeren bağlantı halatları, içinde enerji emici özelliği olan çift kollu bağlantı halatı ve uzunluğu ayarlanabilen bağlantı halatı görülmektedir.

3. **Enerji Emici / Sönümleyiciler**

Düşmeye karşı koruyucu sistemde enerji emici kullanıldığında, herhangi bir düşme durumunda enerji emicinin açıklma mesafesi göz önüne alınmalı ve zemine temastan korunmak için düşüş/durdurma mesafesinin hesaplanmasına dikkat edilmelidir.
EK-2: Tehlike Kaynakları - Önemli Hususlar

Aşağıdaki listede işyerinde düşmeye sebep olabilecek tehlike kaynaklarını değerendlirirken dikkate alınması gereken bazı önemli unsurlar yer almaktadır:

- **Yüzeyler:**
 - Sağlamlık, kırılabilirlik ya da gevreklik
 - Kayma durumu (İslak, parlak, sırlı ya da yağlı vb.)
 - Yüzeyin değiştiği yerlerde çalışanların güvenli hareket edebilmesi
 - Yükleri taşıma kapasitesi ve mukavemet
 - Yüzeylerin eğimi

- **Seviyeler** - Seviye farkı olan ve çalışanın bir seviyeden diğerine düşebileceği yerler

- **Yapılar** - Geçici ya da kalıcı yapıların sağlamlığı

- **Zemin** - Zeminin iskele ya da benzeri çalışma platformunu destekleyecek şekilde düz ve sağlam olması

- **Çalışma alanı** - Kalabalık ya da dağınık olup olmaması

- **İскеle işi** - Platformların tam kapalı olması, çapraz destek, ankraj, korkuluk, erişim vb.

- **Kenarlar** - Katlardaki açık kenarların, çalışma platformlarının, yürüş yollarının, duvarların veya çatıların kenar koruması

- **Boşluklar, açıklıklar, çukurlar** - Koruma gerektirecek unsurlar (Benzer şekilde korumasız şafalar ve kazılar)

- **Çalışanların güvensiz alanlara yakınlığı:**
 - Yüklerin yüksek, yükseltilmiş çalışma alanlarına yerleştirildiği yerler
 - Donatı filizi, çarşın kazi gibi parçaların çalışma alanının altında olduğu yerler
 - Çalışmanın çalışanın üstünde yapılacağı yerler
 - Enerji hatlarına yakın çalışma yerleri

- **Araç, gereç ya da ekipmanların hareketi**

- **Çalışma alanına girişler, çıkışlar ve alan içindeki hareketleri** (Engellerin kontrolü)

- **Birden fazla yüklenicinin aynı alanda çalışması**

- **Elle taşıma**

- **Yetersiz görme** - Kullanılan KKD ya da yüzey yansımaları sebebiyle iyi görememe

- **Aydınlatma**

- **Hava koşulları** - Yoğun yağış, çığ, aşırı sıcak ya da soğuk, rüzgâr vb.

- **Giyim ve ayakkabı** - Çalışma koşullarına uygunluk

- **Merdivenler** - Nerede ve ne şekilde kullanılabilecek.
KAYNAKLAR

[14] https://www.oshatrain.org/courses/mods/805m1.html

[22] https://www.oshatrain.org/courses/mods/833m5.html

[35] https://fallprotectionxs.com/roofs/

[37] http://www.jkssafety.co.uk/conguard.html

